A three-series theorem on Lie groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theorem on Lie Groups

Roughly, the theorem says that each subgroup near enough to G* can be transformed into G* by an appropriate element of G. This result can be regarded as a generalization of the known fact that Lie groups cannot have arbitrarily small subgroups (other than the identity), although it was not from this point of view that our interest arose. To make our meaning clear, assume that G* is an invariant...

متن کامل

Series of Lie Groups

For various series of complex semi-simple Lie algebras g(t) equipped with irreducible representations V (t), we decompose the tensor powers of V (t) into irreducible factors in a uniform manner, using a tool we call diagram induction. In particular, we interpret the decompostion formulas of Deligne [4] and Vogel [23] for decomposing g respectively for the exceptional series and k ≤ 4 and all si...

متن کامل

References on Series of Lie Groups

This is a list of published papers on series of Lie groups. It is intended to be complete but no doubt there are omissions. There are unpublished omissions. The principal ones are the papers by Pierre Vogel. These are available on his home page as zipped postscript files. The url is http://www.institut.math.jussieu.fr/ vogel/ Prpublications / Preprints Algebraic structure on modules of diagrams...

متن کامل

Regular Lie Groups and a Theorem of Lie-palais

In 1984 Milnor had shown how to deduce the Lie-Palais theorem on integration of infinitesimal actions of finite-dimensional Lie algebras on compact manifolds from general theory of regular Lie groups modelled on locally convex spaces. We show how, in the case of effective action, one can eliminate from Milnor’s argument the abstract Lie-Cartan theorem, making the deduction rather elementary. A ...

متن کامل

The Z*-theorem for compact Lie groups

Glauberman’s classical Z∗-theorem is a theorem about involutions of finite groups (i.e. elements of order 2). It is one of the important ingredients for the classification of finite simple groups, which in turn allows to prove the corresponding theorem for elements of arbitrary prime order p. Let us recall the statement: if G is a finite group with a Sylow p-subgroup P , and if x is an element ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

سال: 2016

ISSN: 0246-0203

DOI: 10.1214/14-aihp649